Abstract

Retinal prosthesis or artificial retina is a promising modality of treatment for outer retinal degeneration, caused by primary and secondary loss of photoreceptor cells, in hereditary retinal dystrophy and age‐related macular degeneration, respectively. Okayama University‐type retinal prosthesis (OUReP) is a photoelectric dye‐coupled polyethylene film which generates electric potential in response to light and stimulates nearby neurons. The dye‐coupled films were implanted by vitreous surgery in the subretinal space of monkey eyes with macular degeneration which had been induced by cobalt chloride injection from the scleral side. A pilot 1‐month observation study involved 6 monkeys and a pivotal 6‐month observation study involved 8 monkeys. Of 8 monkeys in 6‐month group, 3 monkeys underwent dye‐coupled film removal at 5 months and were observed further for 1 month. The amplitude of visual evoked potential which had been reduced by macular degeneration did recover at 1 month after film implantation and maintained the level at 6 months. Optical coherence tomography showed no retinal detachment, and full‐field electroretinograms maintained a‐wave and b‐wave amplitudes, indicative of no retinal toxicity. Pathological examinations after 6‐month implantation showed structural integrity of the inner retinal layer in close apposition to dye‐coupled films. The implanted films which were removed by vitrectomy 5 months later showed light‐evoked surface electric potentials by scanning Kelvin probe measurement. The photoelectric dye‐coupled film (OUReP), which serves as a light‐receiver and a displacement current generator in the subretinal space of the eye, has a potential for recovering vision in diseases with photoreceptor cell loss, such as retinitis pigmentosa and age‐related macular degeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call