Abstract

As observers, we believe that we can visually estimate the force that another person is applying to a material. However, it is unclear what kind of cues we use to do this. We focused on two types of visual change that occur when actors push an elastic material from above with their fingers: visual shaking and visual indentation depth. The first one relates to a finger/hand shaking, known as an “induced tremor”, and the second one relates to material deformation due to the application of force. We found that human observers mainly used visual shaking to estimate the force being applied by another person in a video clip. Overall, the apparent applied force was perceived to be stronger when the level of visual shaking was greater. We also found that observers mainly used visual indentation depth and visual shaking to estimate the softness rating of materials. Overall, the apparent softness was perceived to be greater when the visual indentation depth was larger and the level of visual shaking was lower, which indicates that observers use visual shaking to estimate the force being applied, and that estimated force is then used for an estimation of softness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call