Abstract

Modern cephalopods are notably the most intelligent invertebrates and this is accompanied by keen vision. Despite extensive studies investigating the visual systems of cephalopods, little is known about their visual perception and object recognition. In the present study, we investigated the visual processing of the cuttlefish Sepia pharaonis, including visual equivalence and amodal completion. Cuttlefish were trained to discriminate images of shrimp and fish using the operant conditioning paradigm. After cuttlefish reached the learning criteria, a series of discrimination tasks were conducted. In the visual equivalence experiment, several transformed versions of the training images, such as images reduced in size, images reduced in contrast, sketches of the images, the contours of the images, and silhouettes of the images, were used. In the amodal completion experiment, partially occluded views of the original images were used. The results showed that cuttlefish were able to treat the training images of reduced size and sketches as the visual equivalence. Cuttlefish were also capable of recognizing partially occluded versions of the training image. Furthermore, individual differences in performance suggest that some cuttlefish may be able to recognize objects when visual information was partly removed. These findings support the hypothesis that the visual perception of cuttlefish involves both visual equivalence and amodal completion. The results from this research also provide insights into the visual processing mechanisms used by cephalopods.

Highlights

  • Cephalopods possess the largest and most complex nervous systems in invertebrates (Nixon and Young, 2003)

  • In the second amodal completion task, fish and shrimp images were posteriorly occluded and the results showed that the percentages of correct responses of all four cuttlefish were higher than 80% (Figure 7B, left panel)

  • Some cuttlefish took a significant longer time to learn the association between the visual stimulus and the reward, once they had learnt, they could be tested using a range of different visual perception tasks

Read more

Summary

Introduction

Cephalopods possess the largest and most complex nervous systems in invertebrates (Nixon and Young, 2003). Their brains can be anatomically divided into 30–40 interconnected lobes that have similarities to the brain organization of vertebrates (Young and Boycott, 1971; Hochner, 2010). Cephalopods exhibit a repertoire of sophisticated motor responses that are driven by their visual systems (Packard, 1972). Their keen vision assists them in executing a diverse series of complex behaviors such as camouflage body patterning and conspecific communication (Hanlon and Messenger, 1996). Previous studies have demonstrated that cephalopods are capable of various types of visual discrimination, evidence indicating how the highly developed visual systems of cephalopods generate visual sensation and perception are lacking (Zylinski and Osorio, 2014)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.