Abstract
Wavelet image coding exhibits a robust error resilience performance by utilizing a naturally layered bitstream construction over a band-limited channel. In this letter, a new measure that appears to provide a better assessment of visual entropy for comparing and evaluating progressive image coders is defined based on a visual weight over the wavelet domain. This visual weight is characterized by the human visual system (HVS) over the frequency and spatial domains and is then utilized as a criterion for determining the coding order of wavelet coefficients, resulting in improved visual quality. A transmission gain, which is expressed by visual entropy, of up to about 23% can be obtained at a normalized channel throughput of about 0.3. In accordance with the subjective visual quality, a relatively high gain can be obtained at a low channel capacity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.