Abstract

Helmholtz (1867) described as “irradiation” the apparently greater size of a white compared with a dark square, or disc or whatever of the same physical size. The illusory size difference is reversed at low contrasts (Weale, 1974). It is also known that rapid increases in brightness gives apparent movement (gamma movement), though there is no agreed explanation for either phenomenon. When narrow bordering stripes are added, further systematic phenomena occur. With intensity modulation of an edge-striped grey rectangle, which has a dark stripe on the left side and a light stripe on the right (which is similar to figures used by Stuart Anstis and Brian Rogers), the entire figure shifts, with reversed motion when the background luminance is modulated. By presenting a pair of such figures, mirror reversed one to each eye and fused stereoscopically, the question may be asked: Do these illusory shifts produce stereo depth? The answer is surprising: stereo is produced-but at the cross-over with luminance of the central grey rectangle with the background the depth change is opposite to that given by normal, non-illusory, opposed lateral shifts. We interpret this anomalous stereo depth as a switch of which edges of the stripes are fused, with the change of relative contrast of the edges of the dark and light stripes as the figure-background contrast is changed. Measures of static shift, lateral movement, and stereo depth, give somewhat different functions. These are considered in terms of different signalled positions, stereo depth, and movement. This study brings out the importance, for explaining such perceptual anomalies, of distinguishing between neural signal channel characteristics and which stimulus features from the display are selected and accepted for perception. Although conceptually clearly distinct these are all too easily confused in psycho-physical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.