Abstract

Stimuli-responsive hydrogel has been emerged as a popular tool for chemical sensing due to its unique mechanical properties. In this work, we fabricated an ascorbic acid (AA)-responsive alginate hydrogel for the visual detection of alkaline phosphatase (ALP). This alginate hydrogel (RhB@Alg/Fe3+) was crosslinked with Fe3+, and rhodamine B (RhB) was encapsulated into the hydrogel as an indicating reagent to assistant visual detection. Because of the weak affinity of Fe2+ to alginate, the presence of reductive AA can trigger the dissolution of RhB@Alg/Fe3+ to give an observable red color in the sol solution. On this basis, by using ascorbic acid 2-phosphate as a substrate of ALP, which can be hydrolyzed by ALP to produce AA, the gel-sol transition process of RhB@Alg/Fe3+ was further modulated by ALP. This finding leads to a simple visual method for ALP detection with a low detection limit of 0.37 mU/mL and an excellent selectivity over other proteins. Compared with conventional colorimetric assays, this visual sensor shows the distinct advantages of simple fabrication, cost-effectiveness and easy to implement. We believe that this study can provide a new insight into the fabrication of responsive alginate hydrogel for promising applications in chemical sensing and biomedical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call