Abstract

NTRODUCTION: With the rapid development of virtual reality (VR) technology, digital displays have become increasingly important in various fields. This study aims to improve the application of virtual reality technology in the visual design of digital displays by improving the support vector machine (SVM) algorithm. The visual design of digital displays is crucial for attracting users, enhancing experience and conveying information, so an accurate and reliable algorithm is needed to support relevant decisions. OBJECTIVES: The purpose of this study is to improve the SVM algorithm to more accurately identify features related to the visual design of digital displays. By exploiting the nonlinear mapping and parameter optimization of the SVM algorithm, it aims to improve the performance of the model so that it can better adapt to complex visual design scenarios. METHODS: In the process of achieving the objective, multimedia data related to digital displays, including images and videos, were first collected. Through feature engineering, features closely related to visual design were selected, and deep learning techniques were applied to extract higher-level feature representations. Subsequently, the SVM algorithm was improved to use the kernel function for nonlinear mapping, and the penalty parameters and the parameters of the kernel function were adjusted. Cross-validation was used in the training and testing phases of the model to ensure its generalization performance. RESULTS: The improved SVM algorithm demonstrated higher accuracy, recall and precision compared to the traditional method by evaluating it on the test set. This suggests that the model is able to capture visual design features in digital displays more accurately and provide more reliable support for relevant decisions. CONCLUSION: This study demonstrates that by improving the SVM algorithm, more accurate visual design can be achieved in digital displays of virtual reality technology. This improvement provides reliable algorithmic support for the design of digital displays and provides a more prosperous, immersive experience for users. Future research can further optimize the algorithm and iterate with user feedback to continuously improve the visual design of digital displays in virtual reality environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call