Abstract

Sensory experience influences proliferation and differentiation of oligodendrocyte progenitor cells (OPCs). Enhanced sensorimotor experience promoted the lineage progression of OPCs and myelination in the gray matter and white matter (WM) of sensorimotor cortex. In the visual cortex, reduced experience reportedly delayed the maturation of myelination in the gray matter, but whether and how such experience alters the subcortical WM is unclear. Here we investigated if binocular enucleation from the onset of eye opening (i.e., P15) affects the cell state of OPCs in mouse primary visual cortex (V1). Proliferative cells in the WM declined nearly half over 3 days from postnatal day (P) 25. A 3-day BrdU-labeling showed gradual decline in proliferation rates from P19 to P28. Binocular enucleation resulted in an increase in the cycling state of the OPCs that were proliferated from P22 to P25 but not before or after this period. This increase in proliferative OPCs was not associated with lineage progression toward differentiated oligodendrocytes. Proliferative OPCs arose mostly due to symmetric cell division but also asymmetric formation of proliferative and quiescent OPCs. By P30, almost all the proliferated cells exited the cell cycle. Maturing oligodendrocytes among the proliferated cells increased at this age, but most of them disappeared over 25 days. The cell density of the maturing oligodendrocytes was unaffected by binocular enucleation, however. These data suggest that binocular enucleation transiently elevates proliferative OPCs in the subcortical WM of V1 during a specific period of the fourth postnatal week without subsequently affecting the number of maturing oligodendrocytes several days later.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call