Abstract

Blinking is a natural user-induced response which paces visual information processing. This study investigates whether blinks are viable for segmenting continuous electroencephalography (EEG) activity, for inferring cognitive demands in ecologically valid work environments. We report the blink-related EEG measures of participants who performed auditory tasks either standing, walking on grass, or whilst completing an obstacle course. Blink-related EEG activity discriminated between different levels of cognitive demand during walking. Both behavioral parameters (e.g., blink duration or head motion) and blink-related EEG activity varied with walking conditions. Larger occipital N1 was observed during walking, relative to standing and traversing an obstacle course, which reflects differences in bottom-up visual perception. In contrast, the amplitudes of top-down components (N2, P3) significantly decreased with increasing walking demands, which reflected narrowing attention. This is consistent with blink-related EEG, specifically in Theta and Alpha power that, respectively, increased and decreased with increasing demands of the walking task. This work presents a novel and robust analytical approach to evaluate the cognitive demands experienced in natural work settings, which precludes the use of artificial task manipulations for data segmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call