Abstract
It has recently been shown that adapting to a densely textured stimulus alters the perception of visual space, such that the distance between two points subsequently presented in the adapted region appears reduced (Hisakata, Nishida, & Johnston, 2016). We asked whether this form of adaptation-induced spatial compression alters visual crowding. To address this question, we first adapted observers to a dynamic dot texture presented within an annular region surrounding the test location. Following adaptation, observers perceived a test array comprised of multiple oriented dot dipoles as spatially compressed, resulting in an overall reduction in perceived size. We then tested to what extent this spatial compression influences crowding by measuring orientation discrimination of a single dipole flanked by randomly oriented dipoles across a range of separations. Following adaptation, we found that the magnitude of crowding was predicted by the physical rather than perceptual separation between center and flanking dipoles. These findings contrast with previous studies in which crowding has been shown to increase when motion-induced position shifts act to reduce apparent separation (Dakin, Greenwood, Carlson, & Bex, 2011; Maus, Fischer, & Whitney, 2011).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.