Abstract

Visual information processing in the nervous system of flies begins with a large array of photoreceptors, which transduce a light intensity pattern, and culminates in a behavioural response that depends on that pattern.In the previous paper we have given a quantitative description of visual control of flight orientation in the fly. This description can account for fixation, tracking and some instances of spontaneous pattern preference behaviour. The phenomenological theory outlines the basic logical organization of the visual control system of the fly. It requires the neural network between the receptors and the flight muscles to perform two main computations on the visual input. One computation extractsmovementinformation (the termr(ψ)ψ b of the phenomenological equation). The other provides position information (the termD(ψ)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.