Abstract
Pictorial stimuli can vary on many dimensions, several aspects of which are captured by the term ‘visual complexity.’ Visual complexity can be described as, “a picture of a few objects, colors, or structures would be less complex than a very colorful picture of many objects that is composed of several components.” Prior studies have reported a relationship between affect and visual complexity, where complex pictures are rated as more pleasant and arousing. However, a relationship in the opposite direction, an effect of affect on visual complexity, is also possible; emotional arousal and valence are known to influence selective attention and visual processing. In a series of experiments, we found that ratings of visual complexity correlated with affective ratings, and independently also with computational measures of visual complexity. These computational measures did not correlate with affect, suggesting that complexity ratings are separately related to distinct factors. We investigated the relationship between affect and ratings of visual complexity, finding an ‘arousal-complexity bias’ to be a robust phenomenon. Moreover, we found this bias could be attenuated when explicitly indicated but did not correlate with inter-individual difference measures of affective processing, and was largely unrelated to cognitive and eyetracking measures. Taken together, the arousal-complexity bias seems to be caused by a relationship between arousal and visual processing as it has been described for the greater vividness of arousing pictures. The described arousal-complexity bias is also of relevance from an experimental perspective because visual complexity is often considered a variable to control for when using pictorial stimuli.
Highlights
Berlyne (1958) described visual complexity as being influenced by a variety of factors, including number of the comprising elements, as well as their heterogeneity, their regularity and the regularity of the arrangement of elements
In Experiment 1 we found that affective features, in particular emotional arousal, related to ratings of visual complexity beyond what could be explained by computational measures of visual complexity
Across five experiments we found consistent evidence that ratings of visual complexity are related to affective properties of the stimuli
Summary
Berlyne (1958) described visual complexity as being influenced by a variety of factors, including number of the comprising elements, as well as their heterogeneity (e.g., a single shape repeated vs. multiple distinct shapes), their regularity (e.g., simple polygons vs. more abstract shapes) and the regularity of the arrangement of elements (e.g., symmetry, distribution characteristics) (see Figure 1 of Berlyne, 1958). This relationship has been observed dating back to the early 1970s (e.g., Kaplan et al, 1972; Aitken, 1974; Aitken and Hutt, 1974) and this idea has re-emerged more recently (e.g., Stamps, 2002; Marin and Leder, 2013, 2016; Schlochtermeier et al, 2013; Machado et al, 2015; Marin et al, 2016) These studies suggest that more complex pictures are perceived as more pleasant than less complex pictures, a hypothesis supported by earlier work where pleasantness and physiological arousal have been found to be higher for more complex abstract shapes (e.g., Berlyne et al, 1963, 1968; Vitz, 1964; Day, 1967). There might be an effect in the opposite direction, i.e., affect influencing perceived visual complexity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.