Abstract

Experimentally obtained visualizations of propagating inhomogeneous acoustic waves driven by zero-order antisymmetric Lamb waves (flexural waves) in water are presented. The inhomogeneous waves are visualized by optical holographic interferometry. A series of photographs show the evolution in time of instantaneous acoustic pressure distributions associated with propagating inhomogeneous waves. The photographs reveal characteristic features of flexurally driven inhomogeneous waves such as transversely attenuated wavefronts oriented perpendicularly to the plate boundary and a phase propagation velocity along the boundary approximately equal to the plate wave velocity (250 meters/second). Effects due to the dispersive nature of the flexural plate waves are also noted in the photographic series. Features distinguishing these subsonic, inhomogeneous surface waves (also called trapped or evanescent waves) from the leaky, lateral or head wave and also from incompressible fluid motions associated with low frequency vibrations of fluid loaded plates are identified. The relevance of inhomogeneous acoustic waves driven by subsonic flexural waves to practical sound-structure interaction problems is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call