Abstract

Two-Dimensional barcodes are used as data authentication storage tool on several cryptographic architectures. This article describes a novel meaningful image authentication method for data validation using the Meaningless Reversible Degradation concept and QR Codes. The system architecture use the Meaningless Reversible Degradation algorithm, systematic Reed-Solomon error correction codes, meaningful images, and QR Codes. The encoded images are the secret key for visual validation. The proposed work encodes any secret image file up to 3.892 Bytes and is decoded using data stored in a QR Code and a digital file retrieved through a wireless connection on a mobile device. The QR Code carries partially distorted and stream ciphered bits. The QR Code version is defined in conformity with the secret image file size. Once the QR Code data is decoded, the authenticating party retrieves a previous created Reed-Solomon redundancy file to correct the QR Code stored data. Finally, the secret image is decoded for user visual identification. A regular QR Code reader cannot decode any meaningful information when the QR Code is scanned. The presented cryptosystem improves the redundancy download file size up to 50% compared to a plaintext image transmission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call