Abstract

A visual aptasensor based on the combination of graphitic carbon nitride loaded with platinum nanoparticles (PtNPs/g-C3N4) and deoxyribonuclease I (DNase I) was developed for detecting acetamiprid. The prepared PtNPs/g-C3N4 exhibited excellent peroxidase (POD)-like activity, demonstrating the capacity to oxidize the colourless o-phenylenediamine (OPD) to produce the coloured product diaminophenazine (DAP) in the presence of hydrogen peroxide (H2O2). The DNA aptamer of acetamiprid can adsorb onto the surface of PtNPs/g-C3N4, thereby inhibiting its POD activity. The binding of acetamiprid to its aptamer results in the aptamer desorbing from the surface of PtNPs/g-C3N4 and subsequent digestion by DNase I. Ascribed to the synergistic effect of these factors, the aptasensor can achieve the rapid on-site detection of acetamiprid based on the acetamiprid-induced the colour change of the solution just with the smartphone. Furthermore, due to the remarkable fluorescence signal of DAP at 570nm, the aptasensor under fluorescence mode enables highly sensitive and quantitative detection of acetamiprid with a linear range of 1 ng/mL to 4µg/mL and a detection limit as low as 0.31 ng/mL.Theaptasensor has successfully realized the detection of acetamiprid in river water and cucumber samples, offering a novel perspective for the rapid assessment of environmental pollution and food safety risks associated with acetamiprid residues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.