Abstract

BackgroundIndividuals with autism spectrum disorder (ASD) show deficits processing sensory feedback to reactively adjust ongoing motor behaviors. Atypical reliance on visual and somatosensory feedback each have been reported during motor behaviors in ASD suggesting that impairments are not specific to one sensory domain but may instead reflect a deficit in multisensory processing, resulting in reliance on unimodal feedback. The present study tested this hypothesis by examining motor behavior across different visual and somatosensory feedback conditions during a visually guided precision grip force test.MethodsParticipants with ASD (N = 43) and age-matched typically developing (TD) controls (N = 23), ages 10–20 years, completed a test of precision gripping. They pressed on force transducers with their index finger and thumb while receiving visual feedback on a computer screen in the form of a horizontal bar that moved upwards with increased force. They were instructed to press so that the bar reached the level of a static target bar and then to hold their grip force as steadily as possible. Visual feedback was manipulated by changing the gain of the force bar. Somatosensory feedback was manipulated by applying 80 Hz tendon vibration at the wrist to disrupt the somatosensory percept. Force variability (standard deviation) and irregularity (sample entropy) were examined using multilevel linear models.ResultsWhile TD controls showed increased force variability with the tendon vibration on compared to off, individuals with ASD showed similar levels of force variability across tendon vibration conditions. Individuals with ASD showed stronger age-associated reductions in force variability relative to controls across conditions. The ASD group also showed greater age-associated increases in force irregularity relative to controls, especially at higher gain levels and when the tendon vibrator was turned on.ConclusionsOur findings that disrupting somatosensory feedback did not contribute to changes in force variability or regularity among individuals with ASD suggests a reduced ability to integrate somatosensory feedback information to guide ongoing precision manual motor behavior. We also document stronger age-associated gains in force control in ASD relative to TD suggesting delayed development of multisensory feedback control of motor behavior.

Highlights

  • Individuals with autism spectrum disorder (ASD) show deficits processing sensory feedback to reactively adjust ongoing motor behaviors

  • Distinct sensorimotor behaviors and control processes are subserved by discrete brain circuitries that are relatively ubiquitous across individuals and species, making them promising targets for identifying specific neurodevelopmental mechanisms associated with ASD

  • Sensorimotor behavior and clinical impairments We found that force variability and regularity explained 9 to 15% of variability in clinically rated ASD symptom severity suggesting that sensorimotor feedback deficits may contribute to core symptoms or share common developmental pathways

Read more

Summary

Introduction

Individuals with autism spectrum disorder (ASD) show deficits processing sensory feedback to reactively adjust ongoing motor behaviors. Sensorimotor deficits in ASD have been observed across a range of behaviors including gait [9, 10], postural control [11,12,13], precision gripping [14, 15], reaching [6, 16, 17], and eye movements [18,19,20]. They affect multiple stages of motor processing including motor planning [14], motor learning [6, 16, 17], and online motor control [14, 15]. Distinct sensorimotor behaviors and control processes are subserved by discrete brain circuitries that are relatively ubiquitous across individuals and species, making them promising targets for identifying specific neurodevelopmental mechanisms associated with ASD

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.