Abstract

The aim of the present study was to show that planning and controlling the trajectory of a pointing movement is influenced not solely by physical constraints but also by visual constraints. Subjects were required to point towards different targets located at 20°, 40°, 60° and 80° of eccentricity. Movements were either constrained (i.e. two-dimensional movements) or unconstrained (i.e. three-dimensional movements). Furthermore, movements were carried out either under a direct or a remote visual control (use of a video system). Results revealed that trajectories of constrained movements were nearly straight whatever the eccentricity of the target and the type of visual control. A different pattern was revealed for unconstrained movements. Indeed, under direct vision the trajectory curvature increased as the eccentricity augmented, whereas under indirect vision, trajectories remained nearly straight whatever the eccentricity of the target. Thus, movements controlled through a remote visual feedback appear to be planned in extrinsic space as constrained movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.