Abstract
<span lang="EN-US">In recent years, there has been a strong demand for self-driving cars. For safe navigation, self-driving cars need both precise localization and robust mapping. While global navigation satellite system (GNSS) can be used to locate vehicles, it has some limitations, such as satellite signal absence (tunnels and caves), which restrict its use in urban scenarios. Simultaneous localization and mapping (SLAM) are an excellent solution for identifying a vehicle’s position while at the same time constructing a representation of the environment. SLAM-based visual and light detection and ranging (LIDAR) refer to using cameras and LIDAR as source of external information. This paper presents an implementation of SLAM algorithm for building a map of environment and obtaining car’s trajectory using LIDAR scans. A detailed overview of current visual and LIDAR SLAM approaches has also been provided and discussed. Simulation results referred to LIDAR scans indicate that SLAM is convenient and helpful in localization and mapping.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.