Abstract
AbstractThe big data stored in massive open online course (MOOC) platforms have become a posed challenge in the Learning Analytics field to analyze the learning behavior of learners, and predict their respective performance, related especially to video lecture data, since most learners view the same online lecture videos. This helps to conduct a comprehensive analysis of such behaviors and explore various learning patterns in MOOC video interactions. This paper aims at presenting a visual analysis, which enables course instructors and education experts to analyze clickstream data that were generated by learner interaction with course videos. It also aims at predicting learner performance, which is a vital decision‐making problem, by addressing their issues and improving the educational process. This paper uses a long short‐term memory network (LSTM) on implicit features extracted from video‐clickstreams data to predict learners' performance and enable instructors to make measures for timely intervention. Results show that the accuracy rate of the proposed model is 89%–95% throughout course weeks. The proposed LSTM model outperforms baseline Deep learning (GRU) and simple recurrent neural network by accuracy of 90.30% in the “Mining of Massive Datasets” course, and the “Automata Theory” accuracy is 89%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.