Abstract
Many different approaches have been proposed for the challenging problem of visually analyzing large networks. Clustering is one of the most promising. In this paper, we propose a new clustering technique whose goal is that of producing both intracluster graphs and intercluster graph with desired topological properties. We formalize this concept in the (X,Y) -clustering framework, where Y is the class that defines the desired topological properties of intracluster graphs and X is the class that defines the desired topological properties of the intercluster graph. By exploiting this approach, hybrid visualization tools can effectively combine different node-link and matrix-based representations, allowing users to interactively explore the graph by expansion/contraction of clusters without loosing their mental map. As a proof of concept, we describe the system Visual Hybrid (X,Y)-clustering (VHYXY) that implements our approach and we present the results of case studies to the visual analysis of social networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Visualization and Computer Graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.