Abstract
Temporal event data are collected across a broad range of domains, and a variety of visual analytics techniques have been developed to empower analysts working with this form of data. These techniques generally display aggregate statistics computed over sets of event sequences that share common patterns. Such techniques are often hindered, however, by the high-dimensionality of many real-world event sequence datasets which can prevent effective aggregation. A common coping strategy for this challenge is to group event types together prior to visualization, as a pre-process, so that each group can be represented within an analysis as a single event type. However, computing these event groupings as a pre-process also places significant constraints on the analysis. This paper presents a new visual analytics approach for dynamic hierarchical dimension aggregation. The approach leverages a predefined hierarchy of dimensions to computationally quantify the informativeness, with respect to a measure of interest, of alternative levels of grouping within the hierarchy at runtime. This information is then interactively visualized, enabling users to dynamically explore the hierarchy to select the most appropriate level of grouping to use at any individual step within an analysis. Key contributions include an algorithm for interactively determining the most informative set of event groupings for a specific analysis context, and a scented scatter-plus-focus visualization design with an optimization-based layout algorithm that supports interactive hierarchical exploration of alternative event type groupings. We apply these techniques to high-dimensional event sequence data from the medical domain and report findings from domain expert interviews.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on visualization and computer graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.