Abstract
Geospatial data analytical model is developed in this paper to model the spatial suitability of malaria outbreak in Vellore, Tamil Nadu, India. In general, Disease control strategies are only the spatial information like landscape, weather and climate, but also spatially explicit information like socioeconomic variable, population density, behavior and natural habits of the people. The spatial multi-criteria decision analysis approach combines the multi-criteria decision analysis and geographic information system (GIS) to model the spatially explicit and implicit information and to make a practical decision under different scenarios and different environment. Malaria is one of the emerging diseases worldwide; the cause of malaria is weather & climate condition of the study area. The climate condition is often called as spatially implicit information, traditional decision-making models do not use the spatially implicit information it most often uses spatially explicit information such as socio-economic, natural habits of the people. There is need to develop an integrated approach that consists of spatially implicit and explicit information. The proposed approach is used to identity an effective control strategy that prevents and control of malaria. Inverse Distance Weighting (IDW) is a type of deterministic method used in this paper to assign the weight values based on the neighborhood locations. ArcGIS software is used to develop the geospatial habitat suitability model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.