Abstract

Device-free indoor localization is a key enabling technology for many Internet of Things (IoT) applications. Deep neural network (DNN)-based location estimators achieve high-precision localization performance by automatically learning discriminative features from noisy wireless signals without much human intervention. However, the inner workings of DNN are not transparent and not adequately understood especially in wireless localization applications. In this paper, we conduct visual analyses of DNN-based location estimators trained with Wi-Fi channel state information (CSI) fingerprints in a real-world experiment. We address such questions as 1) how well has the DNN learned and been trained, and 2) what critical features has the DNN learned to distinguish different classes, via visualization techniques. The results provide plausible explanations and allow for a better understanding of the mechanism of DNN-based wireless indoor localization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call