Abstract
Networks are often used to model the structure of interactions between parts of a system. One important characteristic of a network is the so-called network community structures that are groups of nodes more connected between themselves than with nodes from other groups. Such community structure is fundamental to better understand the organization of networks. Although there are several community detection algorithms in the literature, choosing the most appropriate for a specific task is not always trivial. This paper introduces a methodology to analyze the performance of community detection algorithms using network visualization. We assess the methodology using two widely adopted community detection algorithms: Infomap and Louvain. We apply both algorithms to four real-world networks with a variety of characteristics to demonstrate the usefulness and generality of the methodology. We discuss the performance of these algorithms and show how the user may use statistical and visual analytics to identify the most appropriate network community detection algorithm for a certain network analysis task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.