Abstract

Face identity is represented at a high level of the visual hierarchy. Whether the human brain can process facial identity information in the absence of visual awareness remains unclear. In this study, we investigated potential face identity representation through face-identity adaptation with the adapting faces interocularly suppressed by Continuous Flash Suppression (CFS) noise, a modified binocular rivalry paradigm. The strength of interocular suppression was manipulated by varying the contrast of CFS noise. While obeservers reported the face images subjectively unperceived and the face identity objectively unrecognizable, a significant face identity aftereffect was observed under low but not high contrast CFS noise. In addition, the identity of face images under shallow interocular suppression can be decoded from multi-voxel patterns in the right fusiform face area (FFA) obtained with high-resolution 7T fMRI. Thus the comined evidence from visual adaptation and 7T fMRI suggest that face identity can be represented in the human brain without explicit perceptual recognition. The processing of interocularly suppressed faces could occur at different levels depending on how “deep” the information is suppressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call