Abstract

Despite the stable walking capabilities of modern biped humanoid robots, their ability to autonomously and safely navigate obstacle-filled, unpredictable environments has so far been limited. We present an approach to autonomous humanoid walking that combines vision-based sensing with a footstep planner, allowing the robot to navigate toward a desired goal position while avoiding obstacles. An environment map including the robot, goal, and obstacle locations is built in real-time from vision. The footstep planner then computes an optimal sequence of footstep locations within a time-limited planning horizon. Footstep plans are reused and only partially recomputed as the environment changes during the walking sequence. In our experiments, combining real-time vision with plan reuse has allowed a Honda ASIMO humanoid robot to autonomously traverse dynamic environments containing unpredictably moving obstacles

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.