Abstract

ABSTRACT Computer-assisted Parkinson’s disease-specific gait pattern recognition has gained more attention in the past decade due to its extensive application. In this research study, vision-based gait feature extraction is obtained from the observed skeleton points to support the real-time Parkinson disease prediction and diagnosis in the smart healthcare environment. So, a novel kernel-based principal component analysis (KPCA) is introduced for establishing respective feature extraction and dimensionality reduction on the patient’s video data. In this research study, a vision-based Parkinson disease identification system (VPDIS) is developed with a feature-weighted minimum distance classifier model to support the clinical assessment of Parkinson’s disease. At the time of experimentation, a steady-state walking style of the patient was captured using the cameras fixed in the smart healthcare environment. Then, the accumulated walking frames from the remote patients were transformed into the required binary silhouettes for the sake of noise minimisation and compression purpose. The resulting experimentation shows that the proposed feature extraction approach has significant improvements on the recognition of target gait patterns from the video-based gait analysis of Parkinson’s and normal patients. Accordingly, the proposed VPDIS using feature-weighted minimum distance classifier model provides better prediction time and classification accuracy against the existing healthcare systems that is developed using support vector machine and ensemble learning classifier models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.