Abstract

Dementia is a degenerative disease that is increasingly prevalent in an aging society. Alzheimer’s disease (AD), the most common type of dementia, is best mitigated via early detection and management. Deep learning is an artificial intelligence technique that has been used to diagnose and predict diseases by extracting meaningful features from medical images. The convolutional neural network (CNN) is a representative application of deep learning, serving as a powerful tool for the diagnosis of AD. Recently, vision transformers (ViT) have yielded classification performance exceeding that of CNN in some diagnostic image classifications. Because the brain is a very complex network with interrelated regions, ViT, which captures direct relationships between images, may be more effective for brain image analysis than CNN. Therefore, we propose a method for classifying dementia images by applying 18F-Florbetaben positron emission tomography (PET) images to ViT. Data were evaluated via binary (normal control and abnormal) and ternary (healthy control, mild cognitive impairment, and AD) classification. In a performance comparison with the CNN, VGG19 was selected as the comparison model. Consequently, ViT yielded more effective performance than VGG19 in binary classification. However, in ternary classification, the performance of ViT cannot be considered excellent. These results show that it is hard to argue that the ViT model is better at AD classification than the CNN model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call