Abstract

The service cycle and dynamic performance of structural parts are affected by the weld grinding accuracy and surface consistency. Because of reasons such as assembly errors and thermal deformation, the actual track of the robot does not coincide with the theoretical track when the weld is ground offline, resulting in poor workpiece surface quality. Considering these problems, in this study, a vision sensing-based online correction system for robotic weld grinding was developed. The system mainly included three subsystems: weld feature extraction, grinding, and robot real-time control. The grinding equipment was first set as a substation for the robot using the WorkVisual software. The input/output (I/O) ports for communication between the robot and the grinding equipment were configured via the I/O mapping function to enable the robot to control the grinding equipment (start, stop, and speed control). Subsequently, the Ethernet KRL software package was used to write the data interaction structure to realize real-time communication between the robot and the laser vision system. To correct the measurement error caused by the bending deformation of the workpiece, we established a surface profile model of the base material in the weld area using a polynomial fitting algorithm to compensate for the measurement data. The corrected extracted weld width and height errors were reduced by 2.01% and 9.3%, respectively. Online weld seam extraction and correction experiments verified the effectiveness of the system’s correction function, and the system could control the grinding trajectory error within 0.2 mm. The reliability of the system was verified through actual weld grinding experiments. The roughness, Ra, could reach 0.504 µm and the average residual height was within 0.21 mm. In this study, we developed a vision sensing-based online correction system for robotic weld grinding with a good correction effect and high robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.