Abstract
Previously we reported that failures of compensatory eye movements led to appreciable binocular retinal image motion during head rotation. Subjectively, the visual world appeared clear, fused, and stable under these conditions. The present experiments examined these impressions psychophysically. The spatial modulation transfer function of subjects with known retinal image motion was measured during head rotation. We found that contrast sensitivity was reduced for gratings over 6 cycles/degree and was increased for lower spatial frequencies. Our results, when compared with Kelly's [J. Opt. Soc. Am. 69, 1340-1349 (1979)] measurements made with artificially moving stabilized gratings, show that natural retinal image motion is less harmful to contrast sensitivity at high spatial frequencies and more beneficial at low spatial frequencies. Furthermore, we had previously found that natural retinal image motion was different in each eye during head movement but no diplopia was noticed. We confirmed this subjective impression by measuring forced-choice stereoacuity thresholds concurrent with binocular head and eye recordings. Stereoacuity was not disturbed by large fixation disparities or high vergence velocities. Recordings also were made while a fused Julesz stereogram was viewed during attempts to break fusion with violent head movements. Fusion could not be broken. Stereograms turned on during violent head movement fused rapidly. We conclude that vision is better with natural retinal image motion than expected from experiments done with stabilized heads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.