Abstract

In this paper, two image processing approaches are presented, which are used to gain vision feedback for automatic nanohandling inside a Scanning Electron Microscope (SEM). The first one is a vision-based force measurement that makes use of an active contours tracking algorithm for real-time tracking of the bending line of micro- and nanoobjects. With this algorithm, it is possible to calculate applied forces in real-time with respect to the image acquisition time. This approach is validated using a piezo-resistive force sensor. In a second experiment the force applied to a Si nanowire (d ≈ 470 nm) is measured. The second visual measurement approach deals with the calculations of depth information inside an SEM by means of stereoscopic images. Therefore, a new 3D-imaging system that uses a stereo algorithm based on a biologically motivated energy model is proposed. The system provides a sharp and high density disparity map in sub-pixel accuracy and a 3D-plot for the user.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call