Abstract

Cyber-physical systems (CPSs) that interact with each other to achieve common goals are known as collaborative CPSs. Collaborative CPSs can achieve complex goals that individual CPSs cannot achieve on their own. One of the examples of collaborative CPSs is the vehicular cyber-physical systems (VCPSs), which integrate computing and physical resources to interact with each other to improve traffic safety, situational awareness, and efficiency. The perception system of individual VCPS has limitations on its coverage and detection accuracy. For example, the autonomous vehicle’s sensor cannot detect occluded objects and obstacles beyond its field of view. The VCPS can combine its own data with other collaborative VCPSs to enhance perception, situational awareness, accuracy, and traffic safety. This paper proposes a collaborative perception system to detect occluded objects through the camera sensor’s image fusion and stitching technique. The proposed collaborative perception system combines the perception of surrounding autonomous driving systems (ADSs) that extends the detection range beyond the field of view. We also applied logistic chaos map-based encryption in our collaborative perception system in order to avoid the phantom information shared by malicious vehicles and improve safety in collaboration. It can provide the real-time perception of occluded objects, enabling safer control of ADSs. The proposed collaborative perception can detect occluded objects and obstacles beyond the field of view that individual VCPS perception systems cannot detect, improving the safety of ADSs. We investigated the effectiveness of collaborative perception and its contribution toward extended situational awareness on the road in the simulation environment. Our simulation results showed that the average detection rate of proposed perception systems was 45.4% more than the perception system of an individual ADS. The safety analysis showed that the response time was increased up to 1 s, and the average safety distance was increased to 1.2 m when the ADSs were using collaborative perception compared to those scenarios in which the ADSs were not using collaborative perception.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.