Abstract

A novel vision-based velocity estimation technique is presented in this paper. A monocular camera rigidly attached to an unmanned ground vehicle (UGV) is used to capture image sequences of the terrain surface and compute the image velocities using an optical flow method. Combining with the proposed camera model, the velocity of the UGV can be directly estimated. This velocity estimation method is validated over coarse sand, fine sand and mixture of coarse sand and gravel separately. Estimated velocities are compared to measured velocities from highly accurate optical encoders, showing the maximum error is less than 1.5%. The effect of feature window size and the distance between the camera projection center and the terrain surface on the velocity estimation is investigated. Random white noise is added to test the robustness of the algorithm and the results are encouraging. The proposed velocity estimation method has many promising potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.