Abstract
Repair technologies have been considered as sustainable approaches due to their capability to restore value in a damaged component and bring it to like-new condition. However, in contrast to a manufacturing process benefiting from an automated environment, the automation level for repair and remanufacturing processes remains low. With the aim of moving the repair industry towards autonomy, this study proposes a novel repair framework. The developed methodology presents a vision-based Robotic Laser Cladding Repair Cell (RLCRC) that has two features: (a) an intelligent inspection system that uses a deep learning model to automatically detect the damaged region in an image; (b) employing computer vision-based calibration and 3D scanning techniques to precisely identify the geometries of damaged area. The repair of fixed bends is selected as the case study. The results obtained validate the efficacy of the proposed framework, enabling automatic damage detection and damaged volume extraction for worn fixed bends. Following the suggested framework, a time reduction of more than 63% is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.