Abstract
In recent years, unmanned aerial vehicles (UAVs), commonly known as drones, have gained increasing interest in both academia and industries. The evolution of UAV technologies, such as artificial intelligence, component miniaturization, and computer vision, has decreased their cost and increased availability for diverse applications and services. Remarkably, the integration of computer vision with UAVs provides cutting-edge technology for visual navigation, localization, and obstacle avoidance, making them capable of autonomous operations. However, their limited capacity for autonomous navigation makes them unsuitable for global positioning system (GPS)-blind environments. Recently, vision-based approaches that use cheaper and more flexible visual sensors have shown considerable advantages in UAV navigation owing to the rapid development of computer vision. Visual localization and mapping, obstacle avoidance, and path planning are essential components of visual navigation. The goal of this study was to provide a comprehensive review of vision-based UAV navigation techniques. Existing techniques have been categorized and extensively reviewed with regard to their capabilities and characteristics. Then, they are qualitatively compared in terms of various aspects. We have also discussed open issues and research challenges in the design and implementation of vision-based navigation techniques for UAVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.