Abstract

Abstract Indian sign language (ISL) is the main communication medium among deaf Indians. An ISL vocabulary show that the hand plays a significant role in ISL. ISL includes static and dynamic hand gesture recognition. The main aim of this paper is to present multi-feature static hand gesture recognition for alphabets and numbers. Here, comparative analysis of various feature descriptors such as chain code, shape matrix, Fourier descriptor, 7 Hu moments, and boundary moments is done. Multi-feature fusion descriptor is designed using contour (Boundary moments, Fourier descriptor) and region based (7Hu moments) descriptors. Analysis of this new multi-feature descriptor is done in comparison with other individual descriptors and it showed noteworthy results over other descriptors. Three classification methods such as, Nearest Mean Classifier (NMC), k-Nearest Neighborhood (k-NN) and Naive Bayes classifier are used for classification and comparison. New Multi-feature fusion descriptor shows high recognition rate of 99.61% among all with k-NN. Real time recognition for number signs 0-9, of fusion descriptor with NMC gave 100% accuracy

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.