Abstract

Unmanned Aerial Vehicles are employed for vision-based modal analysis of civil infrastructure, as they overcome range limitations of fixed cameras and measure the oscillations of a structure up close. Nevertheless, their potential is not fully exploited: they are often piloted manually and one at a time, though one drone is unable to capture high resolution displacement of a whole structure. An approach is explored here, employing multiple drones simultaneously to estimate natural frequencies and modal shapes of a structure, by synchronizing their measurement. The ability of the method to detect modal parameter variations is assessed, such that it can identify anomalies in the structure. Procedures are applied to a test structure, yielding maximum natural frequency estimation errors of 0.2% with respect to accelerometers. The results suggest the accuracy of the approach is high enough to warrant further development and support autonomous, multi-drone applications to the inspection of the built environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call