Abstract

In the paper, optical-based measurement methods for calculating the deflection and vibration of overhead lines are presented. The authors describe the state of the art in the field of non-contact examination of static and dynamic overhead transmission line characteristics, and propose concepts of vision-based measurement systems for both static and dynamic states of a structure. The system devoted to static measurements is based on a digital SLR camera and image-processing software used for the acquisition and interpretation of data. The digital image correlation method, implemented in Wiz2D software, is applied to compute the displacement of the transmission line cable with respect to a known baseline position. Dynamic characteristics of the structure are obtained using a stereo-vision system consisting of two high-speed digital cameras. Corresponding points in two video sequences of the vibrating cable are tracked using TEMA software. 3D positions in a camera frame of reference and displacements are computed using a 3D reconstruction method. The paper describes two series of experiments conducted on a lab setup and the obtained results are examined and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.