Abstract

In this paper, an imitation learning approach of vision guided reaching skill is proposed for robotic precision manipulation, which enables the robot to adapt its end-effector’s nonlinear motion with the awareness of collision-avoidance. The reaching skill model firstly uses the raw images of objects as inputs, and generates the incremental motion command to guide the lower-level vision-based controller. The needle’s tip is detected in image space and the obstacle region is extracted by image segmentation. A neighborhood-sampling method is designed for needle component collision perception, which includes a neural networks based attention module. The neural network based policy module infers the desired motion in the image space according to the neighborhood-sampling result, goal and current positions of the needle’s tip. A refinement module is developed to further improve the performance of the policy module. In three dimensional (3D) manipulation tasks, typically two cameras are used for image-based vision control. Therefore, considering the epipolar constraint, the relative movements in two cameras’ views are refined by optimization. Experimental are conducted to validate the effectiveness of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.