Abstract

There are variety of fruits around the world, different types of fruits contain different types of nutrients and vitamins which could benefits our health. In order to understand which fruit can provide specific type of nutrients, we need to identify the types of fruits. However, fruits grow in a different shape, colour and texture based on the country they were planted and the environment of the land. Implementing a machine vision-based recognition on the fruits can help people recognize them easily. In this paper, an edge detection method is applied using computer vision approach to recognize different types of fruits. The fruits are classified based on the features extracted from their images. In the experiment, a total of 450 images of three types of fruit are used, which are apples, lemons and mangoes. Pre-processing steps are applied on the captured image to improve the quality of fruit details and the edge features are extracted using Canny Edge Detection method. Classification of the fruits is accomplished using two different types of learning model, the deep leaning model, Convolution Neural Network (CNN) and machine learning model, Support Vector Machines (SVM). The performance of both classifiers is compared and the model with the best performance, SVM is chosen as the model for the system. The system can achieve 86% classification accuracy with the SVM model, which is good enough for fruit recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.