Abstract

In this paper, we study the problem of distributed motion coordination among a group of nonholonomic ground robots. We develop vision-based control laws for parallel and balanced circular formations using a consensus approach. The proposed control laws are distributed in the sense that they require information only from neighboring robots. Furthermore, the control laws are coordinate-free and do not rely on measurement or communication of heading information among neighbors but instead require measurements of bearing, optical flow, and time to collision, all of which can be measured using visual sensors. Collision-avoidance capabilities are added to the team members, and the effectiveness of the control laws are demonstrated on a group of mobile robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.