Abstract

This study used stick model augmentation on single-camera motion video to create a markerless motion classification model of manual operations. All videos were augmented with a stick model composed of keypoints and lines by using the programming model, which later incorporated the COCO dataset, OpenCV and OpenPose modules to estimate the coordinates and body joints. The stick model data included the initial velocity, cumulative velocity, and acceleration for each body joint. The extracted motion vector data were normalized using three different techniques, and the resulting datasets were subjected to eight classifiers. The experiment involved four distinct motion sequences performed by eight participants. The random forest classifier performed the best in terms of accuracy in recorded data classification in its min-max normalized dataset. This classifier also obtained a score of 81.80% for the dataset before random subsampling and a score of 92.37% for the resampled dataset. Meanwhile, the random subsampling method dramatically improved classification accuracy by removing noise data and replacing them with replicated instances to balance the class. This research advances methodological and applied knowledge on the capture and classification of human motion using a single camera view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.