Abstract
The automatic collection of key milestone nodes in the process of aircraft turnaround plays an important role in the development needs of airport collaborative decision-making. This article exploits a computer vision-based framework to automatically recognize activities of the flight in/off-block and docking/undocking and record corresponding key milestone nodes. The proposed framework, which seamlessly integrates state-of-the-art algorithms and techniques in the field of computer vision, comprises two modules for the preprocessing and collection of key milestones. The preprocessing module extracts the spatiotemporal information of the executor of key milestone nodes from the complex background of the airport ground. In the second module, aiming at two categories of key milestone nodes, namely, single-target-based nodes represented by in-block and off-block and interaction-of-two-targets-based nodes represented by docking and undocking stairs, two methods for the collection of key milestone are designed, respectively. Two datasets are constructed for the training, testing, and evaluation of the proposed framework. Results of field experiments demonstrate how the proposed framework can contribute to the automatic collection of these key milestone nodes by replacing the manual recording method routinely used today.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.