Abstract

In this paper, a new vision-based adaptive control algorithm is proposed for the positioning of a quadrotor aerial robot (QAR) with an onboard pin-hole camera. First, the transformation between the position tracking error and image projection error is constructed through the spherical projection method, and then the regulation of the position error is achieved indirectly by stabilizing the image projection error. To overcome the challenge that the dynamics of QAR is physically underactuated, a backstepping-based approach that synthesizes the Lipschitz condition and natural saturation of the inverse tangent function is proposed. In the proposed adaptive controller, an optimized adaptive neural network (NN) means is designed, where only the square of the NN weight matrix’s maximum singular value, not the weight matrix itself, is estimated. Moreover, to facilitate practical application, a novel inertial matrix estimator is introduced in the tuning laws, so that the accurate QAR rotation inertial information is not required. By Lyapunov theory, it is proved that the image projection error converges to an adjustable region of zero asymptotically. The effectiveness of the proposed algorithm has been confirmed by the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.