Abstract

Abnormal activation of Wnt/β-catenin signaling is associated with various aspects of cancer development. This study explored the roles of novel target genes of the Wnt/β-catenin signaling pathway in cancer cells. Using the haploid chronic myelogenous leukemia cell line HAP1, RNA sequencing (RNA-seq) was performed to identify genes whose expression was increased by APC disruption and reversed by β-catenin knockdown (KD). The regulatory mechanism and function of one of the candidate genes was investigated in colorectal cancer (CRC) cells. In total, 64 candidate genes whose expression was regulated by Wnt/β-catenin signaling were identified. Of these candidate genes, the expression levels of six were reduced by β-catenin KD in HCT116 CRC cells in our previous microarray. One of these genes was Visinin-like 1 (VSNL1), which belongs to the neuronal calcium-sensor gene family. The expression of VSNL1 was regulated by the β-catenin/TCF7L2 complex via two TCF7L2-binding elements in intron 1. VSNL1 KD-induced apoptosis in VSNL1-positive CRC cells. Additionally, forced expression of wild-type VSNL1, but not a myristoylation, Ca2+ -binding, or dimerization-defective mutant, suppressed the apoptosis induced by camptothecin and doxorubicin in VSNL1-negative CRC cells. Our findings suggest that VSNL1, a novel target gene of the Wnt/β-catenin signaling pathway, is associated with apoptosis resistance in CRC cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call