Abstract

A visible-light-responsive hybrid material was prepared by surface-modification of γ-Al2O3, an insulator with a bandgap of about 8.7 eV, with 5-aminosalicylic acid (5-ASA), leading to the formation of an interfacial charge transfer (ICT) complex. The microstructural characterization of pristine γ-Al2O3 includes X-ray diffraction analysis, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. The pristine γ-Al2O3 powder consists of agglomerated rod-like nanoparticles ((2-3) × (15-20) nm, diameter × length) with the large specific surface area (~420 m2/g). An enormous absorption red-shift is observed upon the formation of the ICT complex. The absorption onset of the inorganic-organic hybrid was found to be at 730 nm by diffuse reflection spectroscopy. The photocatalytic performance of prepared samples was thoroughly tested using the decolorization of the organic dye crystal violet (CV) under illumination in different spectral regions and different light intensities. Excitation with UV light leads to complete decolorization of CV, while the degradation kinetics are impeded when a visible light source is used. Also, the increase of UV light intensity induced significantly faster degradation kinetics of CV, while the degradation rates of CV are quite insensitive to the increase of visible light intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.