Abstract

This paper presents the synthesis of visible-light-harvesting photocatalyst, Ag@AgBr/carbon nanotubes (CNT) nanocomposites, by the photoreduction of AgBr/CNT, which was independently prepared by the deposition-precipitation method. Nanocomposites with different carbon tubes lengths were characterized by X-ray diffraction, Brunauer–Emmett–Teller (BET) surface area, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy (EIS) techniques. Ag@AgBr nanopaparticles were found to be anchored onto the surface of CNT. EIS measurements suggested that the longer CNT in Ag@AgBr/CNT were more efficient in transporting charges than that of the shorter length CNT, which agreed with the observed trend of photocatalytic reduction of CO2 under visible light (λ>420nm) (Ag@AgBr/CNT-L>Ag@AgBr/CNT-M>Ag@AgBr/CNT-S). The study on the photocatalytic reduction of CO2 to methane, CO, methanol, and ethanol suggested that the reduction process favored under neutral and weak alkaline conditions. Ag@AgBr/CNT can maintain the high stability in five repeated uses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.