Abstract

Organic room-temperature phosphorescence (RTP) materials are very attractive, but there is still a challenge to achieve RTP for their practical applications under visible light excitation (λ > 400 nm) because of the implement for the most organic RTP is under ultraviolet light. Herein, a simple tactics for inhibiting the vibrational dissipation of three amorphous phenanthroline derivatives by doping them into polyvinyl alcohol (PVA) matrix was utilized to afford visible-light excitation RTP. By using this method, on account of the mutual H-bonding and confinement effect with PVA matrix, a series of organic RTP materials with blue-green phosphorescence emission were obtained under visible-light excitation. The afterglow colors of RTP materials can be adjusted by co-doping the available fluorescence dyes (RhB or Rh6G) into the PVA films through a triplet-to-singlet Förster resonance energy transfer. However, the H-bonding is easily broken by water molecules resulting in the RTP phenomenon disappears. Hence, Aphen-epoxy resin composite system was constructed to overcome this drawback. It is shown that the composite still has good phosphorescence properties after soaking in water for 7 days. The superior RTP of the amorphous phenanthroline derivatives in processable polymer matrices endows these materials with a highly potential for the night warning clothing coating and information encryption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call