Abstract

A mild and eco-friendly visible-light-induced synthesis of 2-(2-hydrazinyl) thiazole from readily accessible thiosemicarbazide, carbonyl, and phenacyl bromide in the absence of a metal catalyst and/or any extrinsic photosensitizer is reported. This approach only requires a source of visible light and a green solvent at room temperature to produce the medicinally privileged scaffolds of hydrazinyl-thiazole derivatives in good to outstanding yields. Experimental studies support the in situ formation of a visible-light-absorbing, photosensitized colored ternary EDA complex. The next step is to prepare a pair of radicals in an excited state, which makes it easier to prepare thiazole derivatives through a SET and PCET process. DFT calculations additionally supported the mechanistic analysis of the course of the reaction. The antioxidant and antidiabetic properties of some of the compounds in the synthesized library were tested in vitro. All the investigated compounds demonstrated appreciable antioxidant activity, as evidenced by the reducing power experiment and the IC50 values of the DPPH radical scavenging experiment. Furthermore, the IC50 values for 4c, 4d, and 4g also demonstrated a strong α-amylase inhibitory effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.