Abstract

Wide band gap Yb 3+ and Er 3+ codoped ZrO 2 nanocrystals have been synthesized by a modified sol–gel method. Under 967 nm excitation strong green and red upconversion emission is observed for several Er 3+ to Yb 3+ ions concentration ratios. A simple microscopic rate equation model is used to study the effects of non-radiative direct Yb 3+ to Er 3+ energy transfer processes on the visible and near infrared fluorescence decay trends of both Er 3+ and Yb 3+ ions. The microscopic rate equation model takes into account the crystalline phase as well as the size of nanocrystals. Nanocrystals phase and size were estimated from XRD patterns. The rate equation model succeeds to fit simultaneously all visible and near infrared fluorescence decay profiles. The dipole–dipole interaction parameters that drive the non-radiative energy transfer processes depend on doping concentration due to crystallite phase changes. In addition the non-radiative relaxation rate ( 4 I 11/2→ 4 I 13/2) is found to be greater than that estimated by the Judd–Ofelt parameters due to the action of surface impurities. Results suggest that non-radiative direct Yb 3+ to Er 3+ energy transfer processes in ZrO 2:Yb,Er are extremely efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.